UNDERSTANDING NEW GLOVE & SLEEVE PPE STANDARDS

International (ISO) and Australian/New Zealand standards classify and communicate the quality and protection levels of PPE (personal protection equipment). Numeric codes and symbols are used for specifying the correct level of protection for their task. Matching the right product to the appropriate risk can also help with cost controls. These ratings are earned via appropriate testing under the supervision of a third party registered certifying body.

EN 388 – MECHANICAL PROTECTION

EN388:2016	Р	ERFORMANCE	LEVEL RATING	1	2	3	4	5	UNITS		MAIN CHANGES FROM THE		
	A A	brasion Resi	stance	100	500	2000	8000	-	CYCLES		EN 388:2003 STANDARD		
	BB	lade Cut Res	istance	1.2	2.5	5.0	10.0	20.0	COUPE TEST/INDEX		PREVIOUS EN 38& 2003		
	CT	ear Resistanc	е	10	25	50	75	_	NEWTONS				
ABCD XF	DP	uncture Resi	stance	20	60	100	150	-	NEWTONS		New abrasion paper		
	XE	N ISO 13997	Cut Resistanc	е							used in testing. ABCD 2 CUT:		
	RATI	RATINGNEWTONSLEVELA2MINIMAL TO LO			TYP	TYPICAL TASKS					New procedure for COUPE TEST/		
EN388:2016	A				Light general handling & assembly						INDEX which also determines if dulling occurs. If dulling occurs,		
	B	5	L	W	Materials handling & assembly					t	the new EN ISO 13977 test method		
	C	C 10 LOW TO MO			Gla	ss, metal s	heet and n	naterials har	ling. Assembly		becomes the reference whilst the COUPE TEST/INDEX would only		
\checkmark	D 15 MODERATE			re to high	Machine tool operation, welding, glass and metalwork						be indicative.		
ABCD XF	E	22	2 Н	GH	Hea	ivy loads, r		3 IMPACT:					
	F	30	REME	Heavy final assembly, grinding, primary assembly and stamping						Test method for areas claiming impact protection.			
	FE	N Impact Pro	tection		X = 'NOT TE	STED' OR 'NO	T APPLICABL	.E' / P = PASS	/ NO CODE = FAIL				

EN ISO 374 – CHEMICAL PROTECTION AND/OR PROTECTION AGAINST MICRO-ORGANISMS MICRO-ORGANISMS

EN 374-5:2006

EN

T T T number is poor and a low index number is good. Gloves need to pass water and air leak test THIS TEST METHOD REMAINS UNCHANGED

 PERFORMANCE LEVEL RATING
 PREVIOUS RATINGS

 1
 2
 3

 4.0
 1.5
 0.65

PREVIOUS RATINGS
EN ISO 374-1:2003
EN ISO 374-1:2003
INOTE:
The BEAKER icon
(low chemical
resistance/waterproof) has been
eliminated.

IN ADDITION: NEW VIRAL PENETRATION TEST. For protection from bacteria and fungi.

EXISTING: AQL (Acceptable Quality Level) for liquid penetration. A high index

CHEMICAL PROTECTION

AN 374-1:2016 Type C protection Type B protection Type A protection NOTE: Cuffs teste	on from 1 con from 3 con from 6 con fr	or more or more	e chem e chem e chem n +	icals o icals o	n the lis	X X t for 10 t for 30	nin +	X A B C D E F G H I J K L M N O	CHEMICAL Methanol Acetone Acetonitrile Dichloromethane Carbon disulphide Toluene Diethylamine Tetrahydrofuran Ethyl acetate n-Heptane Sodium hydroxide 40% Sulphuric acid 96% Nitric acid 95% Acetic acid 99% Ammonium Hydroxide 25%	CAS No. 67-56-1 67-64-1 75-05-8 75-09-2 75-15-0 108-88-3 109-89-7 109-99-9 141-78-6 142-85-5 1310-73-2 7664-93-9 7697-37-2 64-19-7 1336-21-6	CLASS Primary alcohol Ketone Nitrile compound Chlorinated hydrocarbon Sulphur containing organic compound Aromatic hydrocarbon Amine Heterocyclic and ether compound Ester Saturated hydrocarbon Inorganic base Inorganic mineral acid, oxidizing Inorganic mineral acid, oxidizing Organic acid Organic base	PREVIOUS RATING EN 374:2003 AKJ Protection from 3 or more chemicals from the CHEMICALS LIST with a breakthrough time of 30 minutes +
BREAKTHROUGH TI		1	2	3	4	5	6	P S	Hydrogen peroxide 30% Hydrogen fluoride 40%	7722-84-1 7664-39-3	Peroxide Inorganic mineral acid, contact poison	
	< 10	10+	30+	60+	120+	240+	480+	Т	Formaldehyde 37%	50-00-0	Aldehyde	

EN 407 – HEAT PROTECTION

		PERFORMANCE LEVEL RATING	1	2	3	4	
EN 407	A	Burning behaviour (after flame and after glowtime)	< 20 secs no requirement	< 10 secs < 120 secs	< 3 secs < 25 secs	< 2 secs < 5 secs	
	В	Contact heat (contact temperature and threshold time)	100°C > 15 secs	250°C > 15 secs	350°C > 15 secs	500°C > 15 secs	
	C	Convective heat (heat transfer delay)	> 4 secs	> 7 secs	> 10 secs	> 18 secs	
ABCDEF	D	Radiant heat (heat transfer delay)	> 7 secs	> 20 secs	> 50 secs	> 95 secs	
	E	Small drops molten heat (number of drops)	> 10	> 15	> 25	> 35	
	F	Large quantity molten metal (mass)	30g	60g	120g	200g	

EN 511 – COLD PROTECTION

EN 511

- 0	ULL							
1		PERFORMANCE LEVEL RATING	0	1	2	3	4	
	A	Convective cold. Thermal insulation ITR in m2. °C/W I	< 0.10 0.10 <	< 0.15 0.15 <	< 0.22 0.22 <	l < 0.30	0.30 < 1	NOTE:
-)	В	Contact cold. Thermal insulation R in m2. °C/W	R < 0. 025 0. 025 <	$R < 0.050 \ 0.050 <$	R < 0. 100 0. 100 <	R < 0. 150	0. 150 < R	0 is the lowest rating while 4
;	C	Water penetration test	Fail	Pass				is the highest.

Disclaimer: This guide has been prepared to allow viewers to understand the concepts of cut resistance. No glove provides complete protection against cuts, abrasions or chemicals. Users of hand protection must ensure that they undertake their own testing within their own work environment to ensure that the products are suitable for the intended task. No reliance may be made on this guide as evidence of the efficacy or fit for purpose of these gloves.

ARMOUR SAFETY PRODUCTS